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Self-avoiding random walks (SAWs) are studied on several hierarchical lattices 
in a randomly disordered environment. An analytical method to determine 
whether their fractal dimension D~w is affected by disorder is introduced. Using 
this method, it is found that for some lattices, D=w is unaffected by weak 
disorder; while for others D=w changes even for infinitesimal disorder. A weak 
disorder exponent 2 is defined and calculated analytically [2 measures the 
dependence of the variance in the partition function (or in the effective fugacity 
per step) v ~ L ~ on the end-to-end distance of the SAW, L]. For lattices which 
are stable against weak disorder (2 <0) a phase transition exists at a critical 
value v = v* which separates weak- and strong-disorder phases. The geometrical 
properties which contribute to the value of 2 are discussed. 

KEY WORDS: Self-avoiding walks; disordered environment; hierarchical 
lattices; fractals; renormalization. 

1. INTRODUCTION 

In  this p a p e r  we discuss the statist ics o f  se l f -avoiding r a n d o m  walks  

( S A W s )  in a q u e n c h e d  r a n d o m  env i ronmen t .  S A W s  are  often used  as a 

m o d e l  o f  p o l y m e r  cha ins  ~1~ and  therefore  S A W s  on  a r a n d o m  e n v i r o n m e n t  

represen t  p o l y m e r s  in real ist ic  media .  The  p r o b l e m  of  S A W s  in a q u e n c h e d  
r a n d o m  e n v i r o n m e n t  is non t r iv ia l ,  and  b o t h  the  s ignif icance and  the  

complex i ty  o f  the  p r o b l e m  have  caused  it to a t t r ac t  m u c h  a t t en t ion  in the 

last decade.  
In  a pu re  (i.e., de te rmin is t ic  and  n o n r a n d o m )  e n v i r o n m e n t ,  where  all 

the steps are  ident ica l  to  each  o the r  and  assoc ia ted  wi th  the  same energy,  
the S A W  average  length  N scales as a p o w e r  law ~7~  L D, where  the walk  

has  an  end - to - end  Euc l idean  d is tance  L (bo th  o f  its ends  are  fLxed at  a dis- 

t ance  L apa r t )  and  D is the  S A W  fractal  d i m e n s i o n  ( the fractal  d i m e n s i o n  
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Fig. 1. Dependence of the SAW's fractal dimension D on the fugacity x. 

D is sometimes represented by a size exponent v, D = 1/v). Due to this 
definition of D, the length average is performed on a grand-canonical 
ensemble of SAWs with equal linear sizes L and different numbers of 
steps N. In this ensemble, each step is associated with a fugacity weight 
factor denoted by x. It is straightforward to s h o w  (2' 3) that in a nonrandom 
fractal environment D depends on the type of the lattice and on the value 
of the fugacity x (Fig. 1 ). There is a critical value xc below which the SAW 
is in a stretched phase, while above it it is in a compact phase. In these 
phases, the SAW has the fractal dimension D = Dmax or D = Dra in ,  respec- 
tively (Dmax and D ~ ,  are the dimensions of the maximum- and the 
minimum-length SAWs on the lattice, respectively). The case which 
represents the nontrivial behavior of SAWs is when x = xc, where the SAW 
has a fractal dimension D = Dsaw. 

In a random environment, it is much more difficult to obtain the 
properties of the average-length SAW. One of the interesting questions 
regarding this issue concerns the conditions under which an initial weak 
disorder increases or decays under coarse graining to larger units. This 
question was discussed by Le Doussal and Machta (4). Using Monte Carlo 
simulations on several hierarchical structures, they concluded that for 
hierarchical lattices which can be embedded on Euclidean lattices with a 
sufficiently low dimensionality, weak disorder is always relevant, i.e., its 
effects increase as the system's linear size L grows. For more multiply con- 
nected hierarchical structures, which exist only on Euclidean lattices with 
high dimensions, they found a phase transition between a weak-disorder 
phase and a strong-disorder phase: if the disorder is weak, its effects decay 
as L grows, and thus on large length scales the SAW behaves as if its 
environment was nonrandom. On the other hand, if the disorder is strong, 
its effects increase as L grows. 

In this paper, we introduce an algorithm which uses the real-space 
renormalization-group (RSRG) approach to obtain recursion relations 
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for the positive integer moments  (Z k) of the SAW partition function 
(equivalent to the effective renormalized fugacity per step) on various 
hierarchical lattices. Having these recursion relations, we are able to con- 
clude analytically whether a weak-disorder-strong-disorder transition 
occurs for each one of  those lattices. We also introduce a weak-disorder 
crossover exponent ;t which measures the growth or the decay of  an 
initially weak disorder as a function of  the lattice linear size L. 

The outline of  this paper is as follows: In Section 2 we introduce the 
studied fractals. Section 3 presents the RSRG, which is the analytical 
method used in this paper. In Section 4 we discuss the growth or  decay of  
an initial disorder, introduce the weak-disorder decay exponent defined 
via the size dependence of  the variance of  the distribution of  the partition 
function, and identify the conditions for the existence of  a weak-disorder-  
strong-disorder transition. Section 5 generalizes the discussion to higher 
cumulants of  the partition function, and Section 6 summarizes the conclu- 
sions and presents a discussion. 

2. THE FRACTALS 

We chose to study the behavior of  the SAWs in a random environ- 
ment on seven lattice structures. Two stages of  the iterative construction of  
these fractals are presented in Fig. 2. The first lattice (Fig. 2a) is the one- 
dimensional lattice, which is studied here only for didactic purposes. The 
second lattice is the Mandelbro t -Given curve (Fig. 2b), which is often used 
to imitate the infinite cluster at the percolation threshold pc (bonds 7 and 
8 are "dangling" and therefore are not visited by SAWs from A to B). The 
fractal in Fig. 2c is a "two-dimensional" hierarchical lattice, and the one in 
Fig. 2d is a "three-dimensional" hierarchical lattice (these names relate to 
the minimal dimensions of  Euclidean lattices on which these structures can 
be embedded). In Figs. 2e and 2f simple hierarchical lattices of  two and 
four branches are illustrated (these hierarchical lattices are sometimes used 
to model the problem of directed SAWs(5'6)). 

A B A B A B A B A B A B 

~1 I s 3 ""~1~4 8 

Ca) Co) Cc) (cO (e) C0 

Fig. 2. Two stages of the iterative construction of the fractals: (a) One-dimensional lattice. 
(b) Mandelbrot-Given curve. (c) Two-dimensional hierarchical lattice. (d) Three-dimensional 
hierarchical lattice. (e) Simple lattice of two branches. (f) Simple lattice of two and three 
branches. The SAW enters the lattices at point A and exits at point B. The bonds of each 
fractal are numbered for later use. 
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Fig. 3. (A) The translation of a twe-dimensional square lattice to a hierarchical lattice: 
(a) The square lattice. (b) First-iteration renormalization cell. (c) A horizontal H-cell, which 
is the backbone of (b) for SAWs from left to right. (d) Connecting the endpoints in each side 
results in the two-dimensional hierarchical lattice. (B] Second stage of the two-dimensional 
hierarchical lattice: (a) The square lattice. (b) Separation into vertices. (c) Two-dimensional 
hierarchical lattice. 

The hierarchical lattices are used to model SAWs on regular Euclidean 
lattices, as explained using Fig. 3A. In this figure, a two-dimensional square 
lattice is presented [Fig. 3A(a)] .  A SAW starts at any point on the lattice's 
left edge and terminates at any point on its right edge. The exact locations 
of  the starting point and of  the ending point on the edges are irrelevant for 
the SAW fractal dimension. Following this, the lattice can be replaced by 
a horizontal "H-cell" [Fig. 3A(c)] ,  which is the backbone of  the lattice 
first-iteration renormalization cell [ Fig. 3A(b)].  Connecting the two edges 
of  this H-cell clearly does not have any effect on the SAW, and this trans- 
lates the H-cell to the hierarchical lattice [Fig. 3A(d)] .  The H-cell has 
been successfully used to renormalize various properties of random and 
percolating lattices.~7" s 

Another stage of  the construction of  the two-dimensional hierarchical 
lattice is illustrated in Fig. 3B. In Fig. 3B(b) the lattice is separated into 
two halves (top and bot tom),  and the bold lines indicate edges that are 
unified to one vertex in Fig. 3B(c). 

3. THE A N A L Y T I C A L  M E T H O D  

We define the free energy of  a SAW on a fractal structure as follows. 
Consider a fractal of  the nth generation and (horizontal) linear size 
L=b"  ( b = 2  for all the lattices presented in Fig. 2). We wish to study 
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the behavior of a SAW on a random environment, and therefore we assign 
a random energy ei out of an initial distribution for each bond i. 
The statistical weight associated with each step of the SAW is x ; =  
exp[ - (ei--lz)/kT], where kT is the thermal energy and p is the chemical 
potential per single step. x is sometimes called a "fugacity" per single step, 
generalizing the usual definition of fugacity x = exp (p/kT). We choose to 
work in a grand-canonical ensemble, in which both ends of the SAW are 
fixed to the edges of the lattice. Therefore the partition function is the sum 
over all legitimate edge-to-edge SAWs of all lengths N of the products of 
statistical weights, 

N N 

Z.= Z H e'-~'+u)/kr= Z H xi (3.1) 
S A W s  i =  I S A W s  i =  1 

In generation zero (the upper line of Fig. 2), the lattice contains only one 
bond and therefore the partition function for this generation is Z o = x. If 
we replace this bond by a renormalized bond (after n iterations), then it is 
clear that Z ,  fulfills the role of an effective renormalized fugacity per step 
on the nth generation structure: Z,,+t is obtained from Eq. (3.1) for a 
single-iteration structure (like those in Fig. 2), with x i replaced by Z,(i). 

In our model, the bond energy ei is a random variable with a distribu- 
tion function g(e). We prefer to work with x as the random variable and 
therefore we define a distribution function p(x). The transformation from 
g(e) to p(x) follows from g(e)lde[ =p(x(e))ldxl. Therefore, 

p(x) =g(e)  = g{,u - k T .  In (x)} (3.2) 

In the following sections we will use the real-space renormalization group 
(RSRG) to obtain recursion relations for the moments of the partition 
function ( Z  'k)  of a SAW of the next generation as functions of the 
moments ( Z ) ,  ( Z 2 ) ,  ..., ( Z  k) in the present generation, where the kth 
moment of the present generation partition function is defined by 

( z~5 = i z~p(z) dz  (3.3) 

where on the R/IS, p(Z) represents the distribution function of Z for any 
bond in the present generation. 

The recursion relations for the first two moments will be discussed in 
Section 4. These relations immediately yield a recursion relation for the 
variance, and will therefore enable us to check whether the variance flows 
toward increasing or decreasing disorder under the RSRG iterations. The 
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flow of higher cumulants under RSRG iterations will be discussed in 
Section 5. Analysis of all the cumulants will enable us to check whether the 
nonrandom fixed point (when all the bonds have the same value of Z) is 
stable against small disorder. 

4. WEAK-D ISORDER-STRONG-D ISORDER PHASE 
TRANSIT ION 

4.1. The Fugacity Distr ibution Function Flow on the 
One-Dimensional  Lattice 

We will first demonstrate the analysis of the distribution function flow 
in the simplest case, which is the one-dimensional lattice. The RSRG cell 
in this case consists of two sequential bonds, hence under a RSRG iteration 
the cell fugacity is equal to Z ' =  Z1Z2. The distribution function after one 
iteration p'(Z') is the sum over all the products of the basic distribution 
functions p(Zi) of the two bonds ( i =  1, 2), with the constraint that 
Z '  = Z I Z2, 

p'(Z') = j  p(Zi) p(Z2).6(Z'- ZIZ2) dZl dZ2 (4.1) 

We now express the kth  moment ( Z  'k)  after a RSRG iteration as a 
function of the ( Z k ) .  Straightforward substitution then yields 

(Z'k)= f Z'kp'(Z')dZ'=~ Z~Zkp(Z,) p(ZE)dZ, dZE=(Zk) 2 (4.2) 

for k =  1,2, 3 ..... 
For a nonrandom environment, in which the bond energy e is 

constant, the system's fixed point satisfies Z ' =  Z. Thus the initial bond 
fugacity equals the renormalized cell fugacity, and this leads to self- 
similarity: the system resembles itself at any length scale due to the inability 
to recognize this scale by the value of fugacity. In the case of a random 
environment, a fixed point in the simplified sense should satisfy an equality 
of all the moments, namely (Z  'k) = (Z  k) for all k. Equation (4.2) thus 
yields three fixed points, ( zk )  * =0 ,  ( Z k ) *  = 1, or ( Z k ) *  = o0. The fixed 
points with ( Z k ) * = 0  or ( Z k ) * = c ~  for all k are trivial and not inter- 
esting. Thus, we choose for k =  1 the nontrivial value (Z)*= 1. At this 
fixed value, we can then use Eq. (4.2) to obtain the variance of the fugacity 
distribution function, v' - var ' (Z ' ) ,  

v ' (Z ' )  = ( Z  '2) - ( Z ' ) 2  = v(Z). [2 + v(Z)]  (4.3) 
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where the right-hand side was found after substituting the fixed-point value 
( Z ) * =  1. The expression for v(Z) is always nonnegative and therefore 
v'(Z')>~v(Z), with an equality valid only if v (Z)=0 .  The latter case 
corresponds to the nonrandom-case fixed point, where ( Z ) * =  1 and 
v*(Z*) = 0. The inequality implies that when the initial variance is positive, 
the renormalized variance "flows" to infinity, and there exists no fixed 
point with a finite var(Z). The variance in this case diverges rapidly, no 
matter how small the initial disorder is, toward a point which Le Doussal 
and Machta ~4) denoted as "strong disorder" (SD). The flow away from the 
nonrandom fixed point can be quantitatively characterized by a critical 
exponent 2, which is defined as follows: near this fixed point, where 
( Z )  = 1 and var(Z) =0,  we have v' ~2v=b~v, so that 2 =  1 for the one- 
dimensional lattice (the rescale factor b is equal to 2 for this example). 
After performing n RSRG iterations, if the disorder remains weak, the 
variance flows toward v'C")~b"~v=L~v. We can therefore say that it 
describes the growth of the effective variance with the linear scale L. As dis- 
cussed in Section 5, similar arguments can be used for all higher cumulants. 

4.2.  The  D i s t r i b u t i o n  and t h e  A v e r a g e  F l o w  on a 
G e n e r a l  L a t t i c e  

We will now expand the analysis presented in the previous section to 
the case of any arbitrary hierarchical lattice. In order to avoid the need 
to write down heavy expressions, we first define several notations. To 
demonstrate these notations, each one of them will be accompanied by its 
implementation to the Mandelbrot-Given curve (Fig. 2b). 

We first define the product of the basic distribution function and the 
differential elements over all the bonds i of the RSRG cell of the hierarchi- 
cal lattice, ~ Z -  1-It [p(Z,.) dZg]. We next define the RSRG cell fugacity Z'  
as a function of the basic fugacities Z,., .~'{Z;}. We also define the notation 
9t(Z), which is the RSRG transformation for the nonrandom case, namely 
Z'  -- 9t(Z). 

For the Mandelbrot-Given curve the explicit implementations of these 
notations are 

YI Ep(z,) dz,] 
i 

= p ( Z l )  p(Z2) p(Z3) p(Z4) p(Zs) p(Z6) p(ZT) p(Zs) 

x dZ 1 dZ2dZ3dZ4dZsdZ6dZTdZ s 

~ '  { Zi}  = Z 1 Z 2 Z  3 ~v Z 1 Z 4 Z s Z 6 Z  3 

(4.4a) 

(4.4b) 
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and 
ffl(Z) = Z 3 + Z 5 (4.4c) 

We can now obtain the distribution function p'(Z') after one RSRG 
iteration, 

p'(Z')  = I ~ ( z ' -  :z '{z ,}  ) ~ z  (4.5) 

Note that the integral over the dangling bonds 7 and 8 of Fig. 2b reduces 
to unity, since a SAW from A to B cannot access those bonds. The renor- 
malized distribution function immediately yields an expression for the 
renormalized average ( Z ' ) ,  

(Z') =f Z'.p'(Z')dZ'=~ ~e'{Z,} N Z =  9 t ( ( Z } )  (4.6) 

meaning that the fugacity's average transformation is identical to the 
fugacity's transformation in the nonrandom case. We note that this simple 
result is an outcome of the fact that the fugacity recursion function is a sum 
of products, in each of which every bond is represented by a single factor 
Z;. This is special to this case and cannot be applied to a general problem 
(e.g., electrical currents in a resistor network). Following this result, the 
fugacity's average fixed point is identical to that of the nonrandom case, 

( Z ) *  = 9 t ( ( Z ) * )  (4.7) 

Thus, ( Z ) * = Z * ,  where Z*  is the "nonrandom" fixed-point value. 
This is the only nontrivial fixed point value of ( Z )  for our class of 
problems. 

Obtaining a similar expression for the second moment is a little more 
complicated. When the cell fugacity is raised to the second power, the 
expression which is obtained contains mixed elements, and therefore a 
special calculation has to be applied for each one of the lattices separately. 

4.3. The Flow of the Variance in the v ' -v  Plane and the 
Weak-Disorder  Decay Exponent 

In the forthcoming sections, we will analyze the flow of the variance 
on the lattices presented in Fig. 2. We will first fix the average of the 
distribution at the fixed point ( Z )  = Z*  and then study the dependence of 
the variance in the next generation v' as a function of the present genera- 
tion's v. In the nonrandom case, v = 0 and then v' is also equal to zero. 
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Fig. 4. Various options of the variance flow in the v'-v plane: (a) For every positive v, v' 
always satisfies v' > v. (b) For every positive v, v' always satisfies v' < v. (c) There is a value 
v* for which v' = v, below it v' < v, and above it v' > v. (d) There is a value v* for which o' = v, 
below it v' > v, and above it v' < v. (e) There are several values v* for which v' = v. 

Therefore, one might  expect the function v'(v) to have one of the shapes 
shown in Fig. 4. 

We will now analyze the recursion relat ion for the second moment  
< Z  '2> and show that  among  these five possibili t ies of  Fig. 4, only Figs. 4a 
and 4c are possible. The recursion relat ion for the second moment  is 

=I z '2p ' ( z ' )  dZ' 

=I ' 

i=O 
(4.8) 

where P , , (<Z2>)  is a po lynomia l  of order  m in <Z 2> with coefficients 
a~(z*), and m is the longest  SAW length on a renormal iza t ion  cell 
(m = 2, 5, 3, 4, 2, 3, 8 for Figs. 2a-2g,  respectively). Since ~ ' { Z ; }  is a sum 
of positive terms, all the coefficients a; of  the po lynomia l  are nonnegative.  
We can now construct  a general  recursion relat ion for v' by subtract ing the 
value ( Z * ) 2 = Y  '. a~(Z*) 2i [ th is  equal i ty  follows from subst i tut ing the non-  
r andom dis t r ibut ion p ( Z ) = 6 ( Z - Z * )  into (4.8)] from both  sides of  (4.8), 
and substi tut ing < Z  2 > = v + (Z* )  2 into the r ight-hand side. This results in 

v'= ~ a,[v+(Z*)Z] ~- ~ a~(Z*) 2' 
i=O i = 0  

= a j ( Z * )  2 ( j - i )  v i -  b f  
i = l  j 1 i = l  

(4.9) 

where all the coefficients bl are nonnegat ive since they are sums of  non- 
negative terms, and  bo = 0 to satisfy the demand  for the n o n r a n d o m  case 
v'(v = 0 ) =  0. Due to the fact that  all the b/ 's  are nonnegat ive,  the function 
v'(v) and all its derivatives are monotonica l ly  increasing. The behavior  of  v' 
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in the limits v--*0 and v ~  ~ is also derived from (4.9): for v ~ 0 ,  v'~v, 
while for v ~ oo, v' ~ v". 

Only the plots Figs. 4a and 4c are consistent with the above results, 
and each one of them represents a different scenario of the variance flow. 
If Fig. 4a is valid for a certain lattice, any amount of initial disorder is rele- 
vant, and it will always flow toward increasing disorder. If Fig. 4c is valid, 
initial disorder corresponding to v > v* causes the distribution function to 
flow toward strong disorder. However, if v < v*, the system has one of 
the following behaviors: ( 1 ) if all the higher cumulants also flow to zero, the 
initial disorder is irrelevant and the distribution function flows toward the 
nonrandom case, or (2) if any higher cumulant diverges, the distribution 
function is centered around Z* with a zero width but with an infinite tail 
(this tail, if exists, is not important regarding the average and the variance, 
but it may affect higher cumulants). The flow of the higher cumulants is 
discussed in Section 5, and it is shown there that for lattices for which the 
variance decays, there is a region of sufficiently weak disorder in which all 
the higher cumulants decay as well. 

All of the above analysis was carried out without making any assump- 
tion concerning the initial distribution, and the specific expressions of the 
variance depended only on the type of the lattice. Therefore we will now 
suggest a criterion that will assist in determining whether or not a specific 
lattice has a weak-disorder-strong-disorder phase transition. In the strong- 
disorder regime, for sufficiently large v, the renormalized variance v' will 
always be larger than v, and therefore a transition from the regime v ' <  v 
to the regime v' > v  will occur if the condition v'(v)<v is valid in the 
neighborhood of v--* 0. As discussed above, we can define a critical 
exponent 2, which we call the "disorder decay exponent", through the 
relation 

0v, = ~ iai(Z*)2'i-l'=b'~ (4.10) 
~V v=O i = 1  

which defines 2 to be equal to 

2 = log (Ov'/Ovl v = o) (4.1 la) 
log (b) 

If 2 > 0, i.e., ba>  I, then v'(v)> v for all v, and there is no "weak-strong" 
transition. [See Fig. 4a]. On the other hand, if 2 < 0 ,  then v' "flows" 
toward zero for small v and toward infinity for large v, allowing for the 
weak-strong transition and for a nontrivial fixed point v* separating the 
above two flow directions. [ See Fig. 4c]. 
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Since we are interested in the flow of the variance when ( Z )  = Z*, we 
can add the constant (Z*)  2 to both v and v' in the derivative in (4.11a), 
and obtain an equivalent expression for 2, 

fa<z'2> I 
2 = log \ c~(Z2) [ <z2> = z ,2) / log(b  ) (4.11b) 

Let us now give a graphical interpretation to the value of b ~ by looking at 
the a i. These are defined in (4.8) as the coefficients of ( Z 2 )  i in the expres- 
sion for ( Z ' 2 ) .  Executing the integral (4.8) is analogous to drawing up 
diagrams for all the closed loops that start from the RSRG cell's origin, 
perform a self-avoiding-walk pattern to the second edge of the cell, and 
returning to the origin in another self-avoiding-walk pattern. In each such 
loop, there are n I bonds that are passed once, each contributing a factor 
of ( Z ) = Z *  to the term. Each loop also has n2 bonds that are passed 
twice, each contributing a factor of (Z2 ) .  The loop's total length is equal 
to l =  nl + 2n2 (the summation index i is actually equal to n2). The expres- 
sion for ( Z  'a) is a sum over all the contributions of the various loops. 

This approach is demonstrated for the Mandelbrot-Given curve in 
Fig. 5. In this figure, all the four different loops start at the origin A, pass 
through the second edge B, and return to A. A direction is associated with 
each loop, meaning that each loop is actually counted twice (apart from 
the totally self-overlapping loops in Figs. 5a and 5b). The contribution of 
each loop to the expression of ( Z ' 2 ) ,  as well as the parameters l, nl and 
n 2 of each loop, are written at the top of the figure. 

Following this graphical approach, we can replace the summation 
in (4.10) by summing over all the loops in RSRG cell, and obtain the 
expression 

b~= ~. iai(Z*)2(~-l)= ~. n2(Z*)"  (Z*)(2"z-I)= ~ n2(Z*) ' -2  (4.12) 
i = 1 l o o p s  l o o p s  

The use of Eq. (4.12) can be demonstrated for the one-dimensional lattice 
(Fig. 2a): in that case one has only one loop, with n2= 2, yielding ba= 2 
and ~ =  1 ( Z * =  1 for this lattice). Therefore on this lattice o ~ L .  For a 

<22> 3 <~2",r~ $ ~2>2<7__,,~4 ~2~2,<7__~4 

nl--O , n2=3 111:=0, 112=5 hi=4. n2=2 111--4 , n2=2 
1=6 I=10 1=8 1=8 

(a) (b) (c) (d) 

Fig. 5. A graphical approach for the calculation (Z'Z). 
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general lattice, Eq. (4.12) implies that b x depends on several geometrical 
properties of the lattice. These properties and their contribution to the 
value of b a will be discussed in Section 4.7. 

4.4. The Flow of the Variance on the Mande lbrot -G iven  Curve 

We now analyze the flow of the variance on the M G  curve, fixing ( Z )  
at the nonrandom fixed point Z*. Following Eqs. (4.4c) and (4.7), this 
fixed point obeys the equation ( Z ) = ( Z ) 3 + ( Z ) %  whose nontrivial 
solution is ( Z )  = Z*  = 0.7861 .... 

In order to calculate ~, we can simply use the graphical approach that 
was presented in Section 4.3. Substituting the parameters listed in Fig. 5 
and summing (4.12) over all the loops yields 

b a = 3Z .4 + 5Z .8 + 2 Z  . 6  --1- 2 Z  . 6  = 2.8197... 

i.e., 2=log(2 .8197) / log(2)=0.9436 .... We can also obtain an explicit 
expression for the flow of the variance v by following Eqs. (4.8) and (4.9), 

( Z '2) = f Z ' 2 . p ' ( Z ' )  dZ  ' 

= I . ~ ' 2 ( Z , } ~ Z = ( Z 2 ) a + ( Z 2 ) 5 + 2 ( Z 2 ) 2 ( Z ) 4  (4.13) 

and therefore 

v' = (Z .2 + v) 3 + (Z *z + 0) 5 + 2Z*4(Z .2 + v) 2 - Z .2 

= v 5 --k 5Z*2v 4 --b ( 1 Jr 10Z*4)l) 3 q- (3Z .2 + 10Z .6 + 2Z*4)v 2 

+ (3Z .4 + 5Z .8 + 4Z*6)v (4.14) 

As expected, this relation immediately yields a fixed point at the value 
v* =0.  If any disorder exists in the system (v>0) ,  the variance flows 
toward increasing disorder, no matter how weak the initial disorder was. 
For weak disorder, o' increases as v ' =  b'~v. Since ;t > 0, the variance flow 
for the M G  curve resembles Fig. 4a, with no nontrivial fixed point of the 
variance and no weak-disorder-strong-disorder transition. 

4.5. The Flow of the Variance on the Hierarchical Lattices 

We will now analyze the variance flow on the hierarchical lattices 
in Figs. 2c (the two-dimensional lattice) and 2d (the three-dimensional 
lattice). 
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For the lattice in Fig. 2c, the cell fugacity recursion relation is 

~o,{ Zi  } = Z l  Z2 .~_ Z3Z4 ..~ Z l  Z s Z 4  _~ Z 3 Z s Z 2  (4.15) 

The recursion relation for the average is ( Z ' )  = 2 ( ( Z )  )2 + 2 ( ( Z )  )3. This 
relation leads to an equation for the fixed point, ( Z ) * = 2 ( ( Z ) * ) 2 +  
2 ( ( Z )  *)3, with the nontrivial solution ( Z )  = Z*  = 0.3660 .... Substituting 
~ '{Z~} into the expression for ( Z  '2) results in 

=I 

= 2 ( Z 2 )  2 4- 2 ( Z 2 )  3 + 2 ( Z )  4 Jr- 8 ( Z 2 )  ( Z )  3 "1- 2 ( Z 2 )  ( Z )  4 (4.16a) 

and therefore 

v' = 2(Z .2 + v) 2 + 2(Z .2 + v) 3 + 2 Z  .4 "F 8Z*3(Z .2 "l- V) 

+ 2Z*4(Z .2 + v) - Z .2 

= 2v 3 + (2 + 6Z*2)v 2 + (4Z *z + 8 Z  •4 --[- 8Z'3)13 (4.16b) 

Again, the flow in the v'-v plane is of the shape of Fig. 4a, with no non- 
trivial fixed point. As in the case of the M G  curve, the only fixed point 
of the variance is the nonrandom case v = 0, and any amount of initial 
disorder causes the system to flow toward strong disorder. We also find 

b ~ = 4 Z  .2 + 8 Z  .3 + 8 Z  .4  = 1.0718... 

and 2 = I n  (1.0718)/1n (2)=0.1000 .... meaning that for this "two-dimen- 
sional" lattice the disorder increases much slower as a function of L 
compared with the M G  curve. 

For the "three-dimensional" hierarchical lattice (Fig. 2d), the recursion 
relation for -~'{Zi} is very heavy and contains 15 terms: 

~ '  { Zi} = Z 1 Z2 -~- Z 3 Z4 dr- Z 5 Z 6 -4- Z 1 Z7 Z4 -~- Z 1 Z9 Z6 --~ Z 3 Z7 Z2 

-~ Z 3 Z 8 Z  6 -~- Z s Z 8 Z 4  --~ Z s Z 9 Z  2 -~ Z 1 Z 7 Z s Z  6 -~ Z 1 Z 9 Z 8 Z  4 

-q- Z 3 Z T Z 9 Z  6 -q- Z 3 Z 8 Z g Z 2  -~- Z s Z 8 Z 7 Z  2 --~ Z s Z 9 Z 7 Z  4 (4.17) 

Thus, ( Z ' )  = 3 ( Z )  2 -Jr- 6 ( Z )  3 + 6 ( Z )  4. This relation leads to an equation 
for the fixed point, Z * =  3 Z ' 2 +  6 Z ' 3 +  6Z .4, with the nontrivial solution 

822/80/1-2-|1 
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( Z ) * = 0 . 2 1 7 8  .... Substituting ~ ' { Z i }  into Eq. (4.8) leads to a long but 
straightforward calculation, with the result 

( Z  '2)  = 6 ( Z 2 )  4 d- 6 ( Z 2 )  3 -k- [3 + 3 6 ( Z )  3 + 1 8 ( Z ) 4 ] ( Z 2 )  2 

+ [ 2 4 ( Z ) 3 + 4 2 ( Z ) ' + 2 4 ( Z )  5 +  1 2 ( Z ) 6 ] ( Z  2) 

q- [ 6 ( Z )  4 -I- 1 2 ( Z )  5 + 2 4 ( Z )  6 --1- 1 2 ( Z )  7 ] (4.18a) 

or alternatively 

v' = 6v 4 + (6 + 24Z*2)v 3 + (3 + 18Z .2 + 36Z .3 + 54Z*4)v "- 

-k- (6Z .2 -k- 24Z .3 + 60Z .4 + 96Z .5 + 72Z*6)v (4.18b) 

For  this lattice 

b a = (6Z .2 + 24Z .3 + 6 0 Z  . 4  + 96Z .5 + 7 2 Z  . 6 )  -- 0.7223 

and 2 -:- In (0.7223)/1n (2) = -0.4693 .... Since 2 < 0, the flow has a nontrivial 
fixed point, which is numerically found to be at v* =0.0581... (as shown in 
Fig. 6). 

The new nontrivial fixed point that was found is unstable: every initial 
v which is smaller or larger than v* will flow to zero or toward strong dis- 
order, respectively. This is exactly the analytical presentation to the phase 
transition that was observed by Le Doussal and Machta: if the average 
fugacity equals the nonrandom fugacity's fixed point, any weak initial 
disorder will disappear when we look at the SAW on a large length scale. 
In contrast, a disorder whose variance is larger than v* will diverge toward 
strong disorder. In Section 5 we will show that in the weak-disorder regime 
higher cumulants decay faster, meaning that for lattices with 2 < 0 there is 
a region where all the cumulants decay and weak disorder is irrelevant. 
Numerically it comes out that the amount  of  disorder that can be con- 
sidered "weak" is actually not so small; in the case of  the lattice studied 

v'=O.l 

v=O. 1 

Fig. 6. The flow of the variance at the average fixed point ( Z ) = Z *  on the three- 
dimensional hierarchical lattice. 
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here, the standard deviation at the phase transition is equal to 
a = x/0.0581 = 0.2410 .... which is larger than the fixed point of the average, 
( Z ) *  =0.2178 .... 

4.6. " T w o - D i m e n s i o n a l "  Fractals W h i c h  Are Stab le  
or M a r g i n a l  to W e a k  Disorder  

As we mentioned earlier, Le Doussal and Machta (4) observed that the 
stability to disorder was related to the dimensionality of the embedding 
Euclidean lattice; on lattices that they called "two dimensional" the flow 
was toward strong disorder, while on "three-dimensional" lattices weak dis- 
order was irrelevant. We will now examine the lattices presented in Figs. 2e 
and 2f, and show that although their stability to weak disorder is deter- 
mined by some geometric characteristics of the structures, these are not 
simply related to the dimensions of the embedding Euclidean lattices. 

For the lattice in Fig. 2e, the recursion for the average is ( Z ' )  = 2 ( Z ) 2 ,  
thus Z * =  0.5. It is most simple to calculate b ~ for this lattice using the 
graphical approach explained in Section 4.3. The open loops (i.e., the loops 
which contain no bonds that are being passed twice) do not contribute to 
the summation in Eq. (4.12), since they have n2 = 0. The only contribution 
then comes from the totally self-overlapping loops (i.e., the loops for which 
all the bonds are being passed twice). The expression for b ~ is then 

b x = 4 Z ' 2  = 1 (4.19) 

Thus 2 = 0, meaning that for this fractal the slope of the v'(v) plot at v = 0 
is exactly equal to 1. Therefore this is a marginal case between the existence 
and nonexistence of a weak-disorder-strong-disorder phase transition. Due 
to the marginal behavior, it is interesting to look at the second term for v' 
in the weak-disorder regime, which is found to be exactly v' = v + 2v 2. If the 
initial disorder (in generation zero) is Vo, taking the first correction term 
after n RSRG iterations yields 

v ~ Vo + 2nvo 2 = Vo + 2 log b(L)vo 2 (4.20) 

As stated before, this approximation is valid only in the weak-disorder 
regime, v01og b(L)<  1. However, it does show that the nonrandom fixed 
point v = 0 is unstable, and that v flows toward strong disorder [ this was 
expected since vh(v) and all its derivatives are monotically increasing, as in 
Fig. 4a]. 

Regarding the fractal of Fig. 2f, the recursion for the average is 
( Z ' )  = 2 ( Z ) 2 +  2 ( Z )  3, thus Z*  =0.3660 .... Applying (4.12) to it yields 

b a = 4Z .2 + 6Z .4 = 0.6435... (4.21) 

822/80/I-2-11' 
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Table I. The Disorder Decay Exponent A for Several Lattices 

Lattice Figure Z*  

One-dimensional lattice 
Mandelbrot-Given curve 
Two-dimensional hierarchical lattice 
Three-dimensional hierarchical lattice 
Simple lattice of two branches 
Simple lattice of four branches 

2a 1 1 
2b 0.7862... 0.9436... 
2c 0.3660... 0.I000... 
2d 0.2178... -0.4693... 
2e 1/2 0 
2f 0.3660... -0.6360... 

resulting in a negative 2 = In (0.6435)/1n (2 )=  -0.6360 .... Therefore, a non- 
trivial fixed point v* and a weak-disorder-strong-disorder transition exists 
for this fractal. 

4.7. The Weak-Disorder Exponent and the Geometrical 
Properties Which Influence A 

To summarize this section, we give in Table I the values of the disorder 
decay exponents for the lattices studied in this paper. 

These results imply that there is no trivial dependence of the value of 
2 on the dimensionality of the embedding lattice, and that 2 is a rather 
complicated function of the geometry of each lattice. Looking at Eq. (4.12), 
we can identify two main factors derived from the lattice geometry which 
influence the value of 2. The first factor is the value of Z*, which is 
indirectly influenced by the geometry through the renormalized partition 
function Z'(Z):  the greater is the number of minimal-length paths (i.e., two 
step lengths) in a renormalization cell, the smaller is Z*. Since Z* is 
always smaller than 1, Eq. (4.12) implies that in order to have a small 2, 
the lattice should contain many of these paths. 

The second factor which influences 2 concerns the loops which contain 
doubly passed bonds (i.e., those loops with n2 > 0). Each such loop con- 
tributes a positive term to the summation in (4.12) and enlarges the value 
of 2. Lattices which contain many loops, or lattices which contain singly 
connected bonds, are therefore bad candidates to have a small value of 2 
and a weak-disorder-strong-disorder transition. Let us explicitly examine 
the case of a lattice whose RSRG cell contains ns~ singly connected bonds 
(ns~ > 0). For such a lattice, n2 t> ns~ for all the loops, and thus we have a 
lower bound for (4.12) 

[ 1 b ~= ~, n2(Z*)t-Z>~nsc ~, (Z*)'-Z=nsc ~, (Z*) N-I =nsc (4.22) 
loops loops SAWs 
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where the sum over the loops was replaced by the square of the sum over 
all the edge-to-edge SAWs on a RSRG cell (each of them containing N 
steps), and ZSAws(Z*)N- '=  1 since Z* obeys the fixed-point equation 
Z ' =  Z for the partition function in the nonrandom case, Z ' =  ZsAwsZ N. 
Thus, Eq. (4.22) states that the absence of singly connected bonds is a 
necessary condition for a lattice to have stability against weak disorder. 

The influence of the loops which contain doubly passed bonds is 
clearly seen when comparing the values of 2 between the fractals of 
Figs. 2c and 2f. The fixed point Z* and the total number of possible loops 
(16) are equal for both of them. However, only four loops in the fractal of 
Fig. 2f contain n2 > 0 and contribute to 2, versus 14 contributing loops in 
the fractal of Fig. 2c. Therefore, 2 is much smaller for the former. 

5. THE FLOW OF HIGHER C U M U L A N T S  

In Section 4, we saw several lattices for which the nonrandom fixed 
point was stable against a finite small variance v. In this section, we will 
show that if on a certain lattice the variance flows to zero, then there is a 
region of sufficiently weak disorder in which all the higher cumulants flow 
to zero as well. Inside this region, the distribution itself flows toward a 
nonrandom function (8 function). The analysis carried out in this section 
is a generalization of the graphical approach presented in Section 4.3. 

Defining 

<z'k> = f ~z'k { z,}  ~ z  (5.1) 

we now generalize our discussion of k = 2. We start by defining at k-loop, 
as a path that starts at the origin and performs k edge-to-edge SAWs from 
one edge to the other (and terminates at the origin if k is even or at the 
second edge if k is odd). In each k-loop, there are nj bonds that are passed 
i times along the path, where i =  1, 2 ..... k. The k-loop's total length is 
lk = n l +  2n2 + ... + knk. Executing the integral (5.1) is then equivalent to 
summing over all the k-loops, 

( z ' k )  = E ( z k )  "k ( z k - ' )  "k-'''" ( Z ) "  (5.2) 
k-loops 

Assume a distribution function whose average is Z* and all the cumulants 
C2, C3 ..... Ck_ ~ flOW to zero, meaning that 

( Z 2 >  = Z  .2, <Z3> = Z  .3 ..... ( Z  k- I  ) = Z  * k - I  
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A , B  A, ' ' , B  A. ~B 

Ca) (b) (c) 

Fig. 7. Example of a parent and its children on the MG curve: (a) The two-loop parent, 
(b, c) its two three-loop children. 

We wish to study the flow of the kth  cumulant Ck, and define the exponent 
2 k which measures the decay or growth of Ck with respect to the lattice 
linear size for a weak disorder (e.g., 2 2 is identical to the previously defined 
2). Generalizing Eq. (4.12), this assumption yields 

=aC',. O(z 'k> = ~. nk(Z*) Ik-k (5.3) 
bX* OCk Ct.=O o< z k >  <Zk> =Z'k k-loops 

Each k-loop can be constructed by sequentially performing a ( k -  1 )-loop, 
which will be called a "parent," and an additional one-loop (a one-loop is 
actually an edge-to-edge SAW). The k-loop which is created by the com- 
bination of these two will be called a "child." An example of a two-loop 
parent and its two three-loop children on the M G  curve is depicted in 
Fig. 7. 

Thus, the sum in (5.3) can be separated into a sum over all the 
parents, where each term representing a parent contains a sum over all its 
children, 

b ~k= ~ ~ nk(Z*) I*-k 
(k--  l)-Ioops l-loops 

= ~ nk--I ( z * ) t k - ' - ( k - l )  Z nk (Z*) I'-I ( 5 . 4 )  

(k - I )-loops l-loops nk -- I 

For a given parent, a child will have nk equal to nk_ ~ only if all the 
parent's bonds that were passed r/k_ i times are passed also by the con- 
tinuing one-loop. In other cases n k < n k_ I. Therefore rlk/nl, ._ 1 ~< 1. Thus, 
there is an upper bound to (5.4), 

b~*~ Z .k_,(Z*)'~-'--(k--l) S (Z*)"--' 
(k -- 1 )-loops l-loops 

y. 
{k -- I )-loops 

hE-- i( Z* ) I~- '-(k- 1) = ba~_ (5.5) 
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with the equality valid only if n k = n k_  ~ for all the pairs of parents and 
children, a condition which is obeyed only for the one-dimensional lattice 
(Fig. 2a). Again, we used 

~. (Z*) t ' - I  = 1 
1 -loops 

since Z* obeys the fixed-point equation Z' = Z for the partition function in 
the nonrandom case (Z' = ~SAWs z N ,  and N is equivalent to l l). The result 
(5.5) states that for every hierarchical lattice, 2k < 2k-~ for all k's, meaning 
that in a weak-disorder regime higher cumulants decay faster. The strong 
significance of this statement is that all the cumulants of a fractal for which 
2 = 2 2 < 0 decay to zero for sufficiently weak disorder. Therefore, in order 
to understand the fractal's behavior in weak disorder, one only has to 
study the flow of the variance. However, the disorder could be strong 
enough so that all the cumulants C2, C3 ..... Ck_ l decay to zero, but the 
initial value of Ck is large, so that Ck increases under iterations. The 
divergence of Ck is directly associated with a divergence of ( z k ) .  Since Z 
is a positive random variable, higher moments than k will diverge even 
stronger. Therefore, all the cumulants higher than k will also diverge, and 
the distribution of the partition functions will flow toward a peculiar shape 
centered around Z*, with a zero width and an infinite tail of negligible 
weight [an example of such a distribution is p ( Z ) = ~ x J ( Z - Z * ) +  (1-0~) 
O ( Z - Z I ) ,  with ~--* 1, Z l ~ ,  (1 -0 t )  Z~--*0, and ( 1 - ~ ) Z T - - * c  ( n > 2  
and 0 < c < ~ )  ]. Another possible scenario in which the distribution flows 
toward this shape is that all the cumulants lower than k flow to zero, Ck 
flows to C*, and all the higher cumulants diverge. However, we note that 
2, measures the divergence of C~ only with respect to Ck. The full recursive 
expression for C~, also contains lower cumulants Ci ( i<k ) ,  which may 
cause Ck to diverge even if 2k < 0. We have not investigated this general 
case. 

It is also interesting to check the flow of the high cumulants when v 
is exactly equal to the nontrivial fixed point v*. After studying the recur- 
sion relations for the lattices in Figs. 2d and 2f (for which there exists a 
nontrivial v*), we found that for both of these lattices higher cumulants do 
not have a nontrivial fixed point and they diverge. In this case the flow of 
the distribution is toward a shape with a fixed average, a finite width, and 
an infinite tail. 

6. CONCLUSIONS AND DISCUSSION 

We established an analytical method to determine whether a weak- 
disorder-strong-disorder phase transition occurs on hierarchical lattices. If 
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such a transition exists, the nonrandom fixed point is stable against weak 
disorder. We examined several lattices, and found that the existence of this 
phase transition does not depend on the embedding lattices' Euclidean 
dimensionality, as was suggested in ref. 4, but rather on other geometrical 
features. Two of these features are (1) the value of Z*, which is influenced 
by the number of minimal-length paths in a renormalization cell (these 
paths contribute to the stability to weak disorder), and (2) the complexity 
of the lattice, in the sense of how many loops containing doubly passed 
bonds exist in a RSRG cell (these loops reduce the stability to weak disorder). 
The actual stability to weak disorder depends on the balance between 
these two geometrical features. It was also shown that absence of singly 
connected bonds is a necessary condition for the stability against weak 
disorder. 

We defined a critical exponent 2, which is negative when the nonran- 
dom fixed point is stable against disorder, leading to a "weak-strong" 
transition. When 2 > 0, one has only the "strong"-disorder behavior. For 
weak disorder, 2 describes how the effective partition function's variance v 
depends on the lattice linear size L, v ~ L a. We calculated ;t for several 
hierarchical lattices, and found a lattice for which 2 = 0, meaning that weak 
disorder is marginal. We also showed that the decay of higher cumulants 
is stronger than that of lower ones, namely J-k ~< )~k-l  for all k's, where 2k 
is defined via the L dependence of the kth cumulant, Ck ~ L ~k. This implies 
that in order to understand whether weak disorder grows or decays on a 
certain lattice, it is enough to study the flow of the variance. 

In dilute systems at the percolation threshold, tg) even if all the bonds 
of the infinite percolation cluster are identical, disorder is generated by the 
randomness of the cluster configuration. Since the infinite cluster contains 
singly connected bonds, SAWs on this cluster have 2 > 0, and weak dis- 
order is relevant. Therefore we believe that the average-length SAW on 
percolation clusters is not controlled by the nonrandom fixed point, 
and thus that Dsa, at the percolation threshold differs from its value in the 
undiluted periodic lattice. 
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